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ABSTRACT 

Camera traps serve a pivotal role in the surveillance of wildlife populations within a given 
habitat. Nonetheless, commercially available camera traps tend to be relatively expensive, power-
consuming, non-selective in their detection capabilities, and necessitate subsequent processing 
of the acquired images. In this study, we focus on developing a simple machine-learning wildlife 
camera using ESP32 CAM, a microcontroller that has an integrated camera, flash, and SD 
card storage, for detecting small mammals. The ESP32 CAM was designed to recognize and 
photograph squirrels in natural environments, employing an object detection model formulated 
via an accessible online machine-learning resource known as Edge Impulse. The efficacy of the 
models was systematically assessed, with training images derived from two distinct repositories, 
namely, the Google Images Repository and original photographs captured at the designated field 
site, compared for analysis. Model A, which utilized images from Google, achieved an accuracy 
rate of 61.5%, whereas Model B, which relied on local field photographs, attained an accuracy 
of 83.3%. We compared ESP32 CAM to Hawkray Digital trail camera to assess the model’s 
accuracy in detecting squirrels. Results from the Chi-Square analysis reveal that the number of 

squirrel pictures taken by both cameras was 
the same. A thorough discussion of various 
factors influencing the model’s accuracy, 
including background uniformity, size of 
the object, posture, and distance, was also 
undertaken. Furthermore, this study addressed 
the implementation of TinyML within the 
ESP32 CAM context, as well as the inherent 
limitations associated with the ESP32 CAM 
technology.

Keywords: Camera trap, edge impulse, ESP32 CAM, 
machine learning, object detection model, small 
mammal detection, training image 
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INTRODUCTION 

The use of camera traps is a well-known method for monitoring wildlife (Swann & Perkins, 
2014). Camera traps, or trail cameras, typically denote devices that activate upon detecting 
animal movement within their operational range. They are advantageous for estimating 
population densities and conducting demographic studies, as they facilitate prolonged 
monitoring of a designated area without much human intrusion (Sreedhar et al., 2021; 
Swann & Perkins, 2014). Camera traps possess the capability to acquire high-resolution 
images and videos, which is essential for species monitoring and behavioral research 
(Bird et al., 2021; Blount et al., 2021; Zhu et al., 2021). Additionally, camera traps can 
be strategically employed to alleviate human-wildlife conflicts, including issues such 
as wildlife encroachment, crop destruction, and livestock predation, by monitoring and 
detecting wildlife activity and movement in an area so that the affected community and 
authorities can be alerted and appropriate actions can be planned and taken.

ESP32 CAM is a unique microcontroller that has a built-in integrated camera, flash, 
and SD card storage built into the module. The price is relatively cheap, ranging from 
five to seven US Dollars (around MYR20 to MYR30). Further technical details and a 
datasheet can be found at Ai Thinker’s website (https://docs.ai-thinker.com/en/esp32-
cam). Due to its cheap price and adaptability in terms of programming, it is usually used 
for object identification (Rai & Rehman, 2019; Vinod et al., 2023). Other uses include 
smart agricultural practices (Elhattab et al., 2023), wildlife observation (Linder & Olsson, 
2022), and industrial automation (Vinod et al., 2023), where visual data is primarily used 
to enhance operational efficacy.

Machine Learning (ML) represents a domain within Artificial Intelligence (AI) 
wherein computational systems can discern patterns from datasets via algorithms, thereby 
executing tasks autonomously with or without direct human oversight (Das et al., 2015). 
ML methodologies are progressively being integrated into conservation efforts (Fernandes 
et al., 2020; Shivaprakash et al., 2022; Tuia et al., 2022). For instance, computer vision 
algorithms can be employed to filter and process images obtained from wildlife camera traps 
to screen out blank images and classify the present animal species (Sreedhar et al., 2021). 
The advent of Tiny Machine Learning (TinyML) facilitates the deployment of machine 
learning within resource-limited devices, such as embedded systems and Internet-of-Things 
(IoT) devices, by optimizing algorithms to be as compact as possible to conform to specific 
hardware and software limitations (Disabato & Roveri, 2022; Ray, 2022).

Small mammals are animals with a tiny body size and are less than five kilograms 
(Baharudin et al., 2023). Typical representatives of this group include rodents, moles, 
shrews and bats. The populations of small mammals face significant threats due to 
climate change (Szpunar et al., 2008), deforestation, urbanization, and the expansion 
of agricultural plantations, which are the principal contributors to habitat degradation 
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(Palmeirim et al., 2020). Global research has demonstrated that habitat fragmentation 
resulting from urbanization and agricultural growth has precipitated a decrease in small 
mammal populations (Gomes et al., 2011; Johnstone et al., 2014; Palmeirim et al., 2020). 

A web-based artificial intelligence platform called Edge Impulse (https://edgeimpulse.
com) uses datasets or sensor data to create machine learning models for edge devices. It 
is convenient because Edge Impulse has a user-friendly interface that creates models that 
can be exported and used with a variety of widely used programming languages, including 
Arduino, TensorFlow Lite, and Mbed. This research aims to develop a simple device that 
is efficient for detecting the presence of small mammals using Edge Impulse. This is 
followed by 3 research questions: 

1. Which training set is best for training machine learning algorithms? 
2. Can TinyML be utilized in ESP32 CAM for the recognition of small mammals? 
3. Will ESP32 CAM be at par with its commercial counterparts?

This study specifically focuses on object detection, aiming to detect the presence of 
small mammals in cameras without classifying them into specific species. ESP32 CAM 
is expected to be triggered and capture an image as long as an object is detected as a small 
mammal. The emphasis is on presence detection rather than species classification. We 
train the model with pictures of rats and squirrels due to the frequent presence of these two 
groups of small mammals in the study site. This uses TinyML to be deployed on ESP32 
CAM. The project emphasizes the potential of ESP32 CAM for detection and photographic 
documentation of small mammals through the application of machine learning techniques. 
It deliberately avoids intricate machine learning programming, opting instead for a user-
friendly click-and-drag interface requiring only a basic understanding of coding. 

Another main factor in choosing ESP32 CAM is its low cost. We aim to design the 
camera to be less than 50 MYR and can be customized based on the user’s demand. Our 
primary goal is to evaluate the feasibility of using small, low-power, and cost-effective 
embedded cameras with onboard machine learning for small mammal detection in remote 
field settings. While effective for wildlife monitoring, traditional trail cameras often require 
substantial power, produce large volumes of data that necessitate manual post-processing, 
and may not support real-time edge-based classification. In contrast, embedded solutions, 
such as the ESP32-CAM combined with TinyML, offer a lightweight alternative capable 
of performing real-time inference directly on the device, reducing the need for cloud 
processing and data storage.

We selected ESP32 CAM due to its affordability, low power consumption, and ability to 
capture images autonomously in field conditions. TinyML was chosen as it enables efficient 
deployment of machine learning models on resource-constrained hardware, ensuring that 
inference can be performed locally without constant connectivity. Edge Impulse was utilized 
as it provides an accessible and optimized pipeline for training and deploying machine 
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learning models onto embedded devices, streamlining the integration of AI-based image 
recognition with minimal computational overhead. Furthermore, its no-code approach is 
easy even for non-coders to train computer vision models.

The small mammal detection model was trained using Edge Impulse, utilizing two 
distinct training datasets from the Google Images Repository and local field photographs 
obtained via wildlife camera traps within the same study locale. The accuracy of the model 
was evaluated between these two training data sets within Edge Impulse. The model 
exhibiting superior accuracy was subsequently selected for deployment in the ESP32 
CAM. We tested the ESP32 CAM in the field for its effectiveness.  We then compared the 
results to the commercial wildlife camera trap.

MATERIALS AND METHODS 

Study Site

This study took place at the Eco Hub in the Durian Valley of Universiti Sains Malaysia 
(USM) between January and March 2024, located at coordinates 5°21’41.7”N 100°18’18.0” 
E (indicated by the red dot in Figure 1). The USM campus on Penang Island, Malaysia, has 
been recognized as a “University in the Garden” after the construction of the Eco Hub in 
2001. Eco Hub represents the university’s initiative to preserve campus greenery and protect 
diverse flora and fauna. Photographs of small mammals, subsequently utilized for training 
the machine learning model, were obtained prior to the experiment through a camera trap 
positioned at the location marked in Figure 1. During the preliminary trials conducted at 
the study site, the camera system only detected squirrels and rats. As a result, the small 
mammal detection model in this study was specifically designed to focus on these two 

Figure 1. Location of experiment site (red marker) in Eco Hub USM (Source: Google Map)
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categories of small mammals. This targeted approach ensures that the model is optimized 
for the most frequently observed small mammals within the study area. This same site 
was utilized for the deployment of both the ESP32 CAM and the camera trap throughout 
the experiment. Pieces of bananas were employed as bait to entice small mammals to the 
research area. 

Hardware Components

The main hardware used in this research was the ESP32 CAM AI Thinker, as shown in 
Figure 2. The camera module is OV2640 (2-megapixel resolution). The built-in flash and 
SD card storage help reduce the additional components needed for the project. Although 
the board has WiFi, it was not used as the module was placed in the forest. General-purpose 
input/output (GPIO) pins enable us to add additional sensors if needed. There is also 4 
MB of PseudoStatic Random Access Memory (PSRAM) for data streaming capabilities. 
This capability guarantees high image quality without leading to system instability in the 
ESP32. A basic blue housing produced via 3D printing by employing polylactic acid (PLA) 
filament was specifically engineered to secure and contain the ESP32 CAM (Figure 3).

The ESP32-CAM lacks an integrated USB interface. Consequently, an ESP32-CAM-
MB programmer (Figure 4) is needed to successfully upload programmed code into the 
ESP32-CAM module.

Power was supplied to the ESP32 CAM through the soldering of pins from a four-slot 
18650 lithium battery shield. This battery shield was interconnected with a UPS 4W solar 
panel (Figure 5) to enhance and prolong the operational longevity of the device when 
deployed in field conditions. This study used a 32GB micro-SD card to augment the storage 
capabilities of ESP32 CAM. With its ESP32 development board, the ESP32-CAM is 
compatible with programming via the Arduino Integrated Development Environment (IDE).

The Hawkray digital trail camera (Figure 6) was the camera trap employed for the 
preliminary acquisition of images of small mammals. We used the same camera trap again 

Figure 2. Front and rear view of ESP32 CAM Figure 3. Front and rear view of a 3D printed casing 
for ESP32 CAM
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in the field in conjunction with the ESP32 
CAM AI Thinker. Four AA alkaline batteries 
supply the camera trap’s operational power.

Both the cameras (Hawkray digital trail 
camera and the ESP32 CAM AI Thinker) 
function differently from each other. The 
Hawkray camera has a much higher-
resolution image of 12 MP. It is also equipped 
with a Passive Infrared (PIR) sensor and 
InfraRed (IR) Light Emitting Diode (LED). 
When motion and heat are detected, the PIR 

Figure  4 .  ESP32-CAM-MB 
programmer

Figure 5. ESP32 CAM connected to a 18650 battery shield for a solar 
panel

Figure 6. Front and rear view of the Hawkray digital 
trail camera

sensor activates the camera. The image sensor captures the scene, using IR LEDs during 
low-light conditions, and saves the data to an SD card. The camera enters a power-saving 
mode when no motion or heat is detected, thus enabling it to function for a prolonged time. 
However, it is also prone to false positives, in which movements from the foliage or even 
leaves falling in front of the lens could trigger the camera. For our experiment, the camera 
was set to take 12 MP images when triggered. It was also programmed to capture the images 
in the first 5 minutes with a 10-second delay between each image.

The ESP32 CAM AI Thinker works by continuously watching the area. Since it is 
trained to recognize only specific objects (in our case, small mammals), it will ignore 
other movements or objects in its field of vision. Unfortunately, it is not equipped with 
any IR LEDs, thus rendering it useless during night or low-light situations. Therefore, 
it is programmed to be awake from 7 am until 8 pm. It will remain in deep sleep mode 
during the night. We programmed it to take pictures for 5 minutes with a 10-second delay 
between each image.
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Machine Learning Model

Edge Impulse functioned as the training 
platform for this research initiative, enabling 
the formulation of the machine learning 
algorithm utilized by the ESP32 CAM for 
the recognition of small mammals. The 
training process was systematically divided 
into five distinct phases (Figure 7). Initially, 
images depicting the target subject, namely, 
small mammals, were collected. These 
images served as the training dataset within 
Edge Impulse, enabling the extraction of 
machine-recognizable features. For this 
study, the training images of small mammals 
were sourced from two primary channels: 
images retrieved from the Google Image 
Repository and local images obtained 
through a camera trap. In Model A, images 
of squirrels and rats were sourced from the 
Google Images Repository, culminating in 
the acquisition of 738 images of squirrels 

Figure 7. Flow chart of the entire project

and 1,074 images of rats, which were subsequently uploaded to Edge Impulse. Examples 
of training images in Model A are shown in Figure 8. The imbalance ratio between images 
of squirrels and rats resulted from a manual selection process that prioritized images most 
relevant to local species and background settings. For Model B, local field images of 
squirrels and rats were obtained from a camera trap strategically positioned at the research 
site, EcoHub, to capture images of squirrels and rats. The final results of 244 images were 
documented, consisting of 201 images showcasing squirrels during daylight and 43 images 
depicting rats at night. Examples of training images in Model B are shown in Figure 9. Due 
to fewer images being captured, we created replicates for each image, producing 488 images 
to increase the dataset. Eight images were manually taken using the camera at the exact 
angle as a background dataset to help the model identify the background. These images 
were then uploaded to Edge Impulse. As this study focuses on small mammal detection 
rather than species classification, and squirrels and rats are within the targeted group, the 
difference in the number of images is not a primary concern. 

The second phase involved annotating the images through the application of bounding 
boxes. Bounding boxes were precisely outlined around all observable squirrels and rats 
within the images, and corresponding labels were assigned. The designations employed 

Model B
Images from 
camera trap

Collect images

Model A
Images from 
the Internet

Labelling images using Edge Impulse

Train using FOMO MobileNet V 2.0.1

Export model as Arduino Library

Modified eloquent Arduino code

Field deployment test comparison with 
Hawkray Trail cam
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included ‘squirrel’ and ‘rat’. In instances where camera trap images contained no animals, 
no bounding boxes were labeled, and such images were systematically categorized as 
background images. In the Edge Impulse tutorial and DroneBot Workshop methodology 
(https://dronebotworkshop.com/esp32-cam-intro/), backgrounds are pictures without the 
object. We did not specify or rename it into ‘background’; rather, images that were not 
labeled (no objects within them) will be automatically considered ‘background’. Since we 
will be testing at the same place inside the forest, we chose our forest image (without any 
animals) as the background. We use the feature explorer in the Edge Impulse systems to 
describe the overall pattern of the dataset.

Figure 8. Labelled training image examples of the rat and squirrel in Model A

Figure 9. Labelled training image examples of the rat and squirrel in Model B
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The third phase involves training the model to utilize the labelled images. The images 
were converted to grayscale to ensure that the model concentrated on the morphological 
features of small mammals, independent of color. The images were converted to grayscale 
to ensure that the model focused exclusively on the morphological features of small 
mammals, such as body shape, size, and structural details, independent of color variations 
that may not be relevant for classification. Morphological features are critical for 
distinguishing between small mammal species, as their physical structures often contain 
defining characteristics that are species-specific. This approach is particularly feasible 
because grayscale images reduce computational complexity and eliminate potential biases 
introduced by environmental lighting or fur coloration, which may vary within the same 
species. A good result here would be the model’s ability to achieve high precision and 
recall in distinguishing between species based solely on morphology, demonstrating 
that the extracted grayscale features effectively capture the necessary species-specific 
patterns. Success would be indicated by accurate classification metrics, supporting the 
hypothesis that morphological features are sufficient for species differentiation in this 
context. Edge Impulse offers a pre-configured neural network capable of training the object 
detection model and producing an output. This process is also called Transfer Learning. 

Transfer learning is a machine learning technique where a pre-trained model, initially 
trained on a large dataset, is adapted to a new but related task with a smaller dataset. Instead 
of training a model from scratch, transfer learning leverages the knowledge gained from a 
previously learned task, significantly reducing training time and improving performance, 
especially when labeled data is limited. The settings were left at default since we were 
using Edge Impulse’s free account. Through trial and error, we found that increasing or 
modifying certain parameters tends to cause online training to fail. The number of training 
cycles/epoch were kept at 30. The learning rate was set at 0.01. The Training Processor 
is a CPU (GPU access is for paid accounts). The validation set data size is kept at 20%. 
This means that the images are sorted and selected randomly by Edge Impulse for training, 
testing and validation before training. The batch size is kept at 32, which is the default. 
Data augmentation is limited to grayscale only. We did not use the quantized model option, 
which will cause the model to crash during Arduino compilation later.

The available neural network architecture for the free account version of Edge Impulse 
is FOMO (Faster Object More Object) MobileNet V2.0.1. FOMO (Faster Objects, More 
Objects) MobileNet V2.0.1 represents an advanced object detection framework optimized 
for edge artificial intelligence applications within environments with limited resources. 
It builds upon the MobileNetV2 architecture, modified to facilitate rapid object detection 
with reduced computational demands.

In contrast to traditional object detection frameworks that rely on bounding boxes, 
FOMO employs a grid-based approach to object localization, rendering it exceptionally 
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efficient for applications such as counting, tracking, and real-time detection of minute 
objects. This streamlined model is particularly advantageous for implementation on 
microcontrollers and low-power edge devices, where conventional deep learning models 
may incur prohibitive computational costs. The dataset was partitioned into 75% for 
training and 25% for testing. In Edge Impulse, the platform automatically splits the dataset 
into training and validation sets during the training pipeline. The confusion matrix and 
performance metrics shown after training are derived from the validation set. This ensures 
the results reflect the model’s capability to handle new data.

Edge Impulse employs several techniques to address overfitting during model training. 
One key method is data splitting, where the platform automatically divides the dataset 
into training, validation, and sometimes test sets. This ensures that the model is evaluated 
on unseen data, providing a more accurate measure of its generalization capabilities. 
Additionally, data augmentation can be enabled to introduce variability into the training 
data through methods such as noise addition, cropping, or flipping. This variability 
helps the model learn more robust patterns and reduces its reliance on specific data 
features. Lastly, Edge Impulse offers predefined machine learning architectures, such as 
convolutional neural networks, which are often optimized to balance model complexity 
with generalization, minimizing the likelihood of overfitting.

Based on the F1 score of accuracy (based on the validation dataset) that we derived 
from the confusion matrix, we selected the best model to be deployed to the ESP32 CAM. 
After the training, the fourth step is to upload the model that is compatible with the ESP32 
CAM. Edge Impulse packages the model into a compact library that can be installed inside 
the Arduino IDE (Salerno, 2024). We adopted and modified codes from GitHub (https://
github.com/eloquentarduino/EloquentEsp32cam). We further modify the FOMO example 
from the library to detect and save the images to the SD card. To reiterate a previous point, 
we cannot use an optimized quantized model due to the incompatibility with the Eloquent 
Arduino library.

The concluding phase involved executing the model on the ESP32 CAM to ascertain 
its operational efficacy. The code was transferred to the ESP32 CAM through a connection 
to a laptop utilizing the ESP32-CAM-MB programmer alongside the Arduino Integrated 
Development Environment (IDE). Subsequently, the camera was deployed in the field 
for empirical evaluation. The comprehensive code can be accessed at https://github.com/
nroselnik/ESP32CAM-for-detecting-rats-and-squirrels.

Field Experiment

The experiment was conducted at the Eco Hub in Universiti Sains Malaysia. An ESP32 
CAM and a Hawkray trail camera were deployed at the research location (Figure 1). Both 
devices were positioned at ground level with the lenses aimed towards a tree. Bananas 
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were distributed around the tree to serve as baits that attract small mammals. Given that the 
primary objective of this project is to assess the efficacy of the ESP32 CAM in detecting 
small mammals and capturing their images, the use of bait to lure the animals does not 
compromise the integrity of the study. The experiment was conducted over three distinct 
days to procure three replicates of the dataset. The cameras were operated continuously 
for 24 hours during each experimental session and were subsequently retrieved to transfer 
the images to a laptop. This procedure ensured that the cameras functioned effectively 
during deployment and helped conserve the memory capacity of the SD card, thereby 
preventing operational interruption due to full storage, which could impede the experiment’s 
advancement. After the images were transferred to a laptop, we compared the ESP32 CAM 
and the Hawkray Digital Camera. 

Data Analysis

In relation to the first research question, we compared the confusion matrix of Model A and 
Model B to find the best implementation model. This comparison assessed the difference 
in the accuracy of the developed models utilizing training images sourced from the Google 
Images Repository and from local field photographs captured by a camera trap at the 
identical location. Additionally, the analysis was done on the feature explorers shown by 
Edge Impulse for each model.

The captured images taken from both cameras were compared to address the second 
and third research questions. As ESP32 CAM does not come with an infrared (IR) sensor 
and is therefore incapable of detecting heat signatures, it depends solely on the machine 
learning model for image capture, only when the object of interest, a small mammal, enters 
the frame and is detected. As a result, the effectiveness of the ESP32-CAM in detecting 
small mammals is entirely dependent on the accuracy and performance of the machine 
learning-based detection algorithm. From the comparison with the Hawkray Trail Camera, 
which has an IR sensor, we can determine the effectiveness and performance of the detection 
model implemented in ESP32 CAM. The assessment relies on how many small mammals 
were accurately detected, as well as those incorrectly detected. Four classification metrics 
are involved in building a confusion matrix table:

• True Positive (TP): A small mammal appears, and an image is captured. 
• False Positive (FP): A small mammal did not appear, yet an image was captured. 
• True Negative (TN): Anything other than the small mammal appears, and no 

image is captured. 
• False Negative (FN): A target small mammal appears, but the camera does not 

capture the image.
A chi-squared (Goodness of Fit) test was conducted to evaluate the differences between 

these cameras. The Significance level was set at 0.05. We calculated the Precision, Recall 
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and F1 values. The formulas for each metric are outlined as Equations 1, 2, and 3 (Chicco 
& Jurman, 2020).

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
                                     [1] 

𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
                                       [2 ] 

𝐹𝐹1 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2  ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  × 𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹

                                            

 [1]𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
                                     [1] 

𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
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RESULTS

Accuracies of Model A and Model B

Figures 10 and 11 show the Feature Explorer results for both models. In Model A, the 
features derived from labelled images of squirrels and rats exhibit a considerable degree 
of overlap. Conversely, for Model B, the features extracted from labelled squirrel images 
are distinctly separated from those of labelled rat images, exhibiting minimal overlap.

The Feature Explorer is automatically generated in Edge Impulse and represents a 
visualization of the extracted features from the training data. This is typically a pre-training 
step designed to give users an overview of how well the features separate the different 
classes in the feature space. At this stage, the model is not yet trained. The scatter plot is 
purely a visualization of the data in the feature space based on the extracted features (e.g., 
spectral, time-domain, or other custom features). The axes do not have predefined labels 
in this specific case because they are automatically generated based on dimensionality 
reduction techniques, such as principal component analysis (PCA) or t-distributed stochastic 
neighbor embedding (t-SNE). These techniques transform the high-dimensional feature 
space into two dimensions for visualization purposes, aiming to capture the maximum 
variance or class separability. As a result, the axes do not correspond directly to specific 
physical variables but instead represent combinations of features that best illustrate the 
class distributions in the dataset. It helps users assess whether the features are sufficiently 
discriminative for classification tasks before moving forward with model training.

The accuracy of the object detection model between two distinct image sources (the 
Google Images Repository and the camera trap) was compared. The confusion matrix in 
Edge Impulse offers valuable insights into the efficacy of the object detection model by 
comparing the predicted class and the actual class detected. Tables 1 and 2 illustrate the F1 
score (based on the Validation dataset) and confusion matrix produced by Edge Impulse 
for Model A and Model B, respectively. The rows represent the predicted class, and the 
actual labels are the columns.
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The matrix illustrates the number of instances that were inaccurately categorized. The F1 
score serves as a metric to evaluate the efficacy of the predictive models. The F1 score attains 
its optimal value of 1, indicating perfect precision and recall, and its minimal value of 0. 

The first table represents the performance of model A with an F1 score of 61.5%. 
The results indicate that the model performed exceptionally well in classifying the 
“Background” class, with 99.4% of the instances correctly identified and only 0.3% 
misclassified as either “rat” or “squirrel.” This is further supported by the perfect F1 score 
of 1.00 for the “background” class, highlighting the model’s reliability in detecting this 
class. For the “rat” class, the model correctly classified 58.7% of instances; however, a 
significant portion, 41.3%, was misclassified as “background,” and no “rat” instances were 

Figure 10. Training set and feature explorer of Model A in Edge Impulse

Figure 11. Training set and feature explorer of Model B in Edge Impulse
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misclassified as “squirrel.” This resulted in a lower F1 score of 0.59, reflecting challenges 
distinguishing the “rat” class, particularly due to confusion with “background.” The 
“squirrel” class performed slightly better, with 81.6% of instances accurately identified, 
though 18.4% were also misclassified as “background.” The F1 score for “squirrel” was 
0.65, indicating moderate performance but room for improvement, especially in addressing 
the misclassification with “background.”

The second table reflects the performance of Model B with an F1 score of 83.3%. In 
this iteration, the model achieved perfect classification for the “background” and “rat” 
classes, with 100% of instances correctly identified and without misclassifications. The 
F1 scores for both classes were 1.00, signifying excellent performance. For the “squirrel” 
class, the model correctly classified 68.6% of instances, an improvement over the first 
model. However, 31.4% of “squirrel” instances were still misclassified as “background,” 
indicating that some challenges remain in distinguishing this class. Despite this, the F1 
score for “squirrel” improved to 0.80, demonstrating a better balance between precision 
and recall compared to the first model.

Performance of ESP32 CAM

Hawkray Digital Trail Camera recorded 123 images, whereas the ESP32 CAM shows 117 
images. Table 3 shows the number of images documented by each camera. Some of the 
images captured by both cameras are shown in Figures 12 and 13, with the small mammals 
circled in red. 

The efficacy of the ESP32 CAM was systematically assessed. As the ESP32-CAM 
lacks night vision capabilities, it could not be evaluated for its effectiveness in detecting 

Table 1 
F1 score and confusion matrix of Model A obtained from Edge Impulse

 F1 Score 61.5% Background Rat Squirrel
Background 99.4% 0.3% 0.3%
Rat 41.3% 58.7% 0%
Squirrel 18.4% 0% 81.6%
F1 Score 1.00 0.59 0.65

Table 2 
F1 score and confusion matrix of Model B obtained from Edge Impulse

 F1 Score 83.3% Background Rat Squirrel
Background 100.0% 0% 0%
Rat 0% 100% 0%
Squirrel 31.4% 0% 68.6%
F1 Score 1.00 1.00 0.80
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Table 3 
Number of images captured by Hawkray digital trail camera and ESP32 CAM in the 3 experiment days

Experiment Day Hawkray digital trail camera ESP32 CAM
1 30 images of squirrels

10 images of rats (night)
   2 images of bats (night)
   1 image of chicken

29 images of squirrels

2 54 images of squirrels 51 images of squirrels
15 blank images

3 24 images of squirrels
   2 images of rats (night)

18 images of squirrels
   4 blank images

Total 123 images 117 images

Figure 12. Images captured by ESP32 CAM showing the squirrel’s appearance (red circle) in poor resolution 
(480 × 320 pixels)

nocturnal animals. Consequently, rats and bats were excluded from the results. Instead, the 
evaluation was exclusively conducted utilizing images depicting squirrels, as they were 
the only small mammals detected by the Hawkray camera and the ESP32-CAM during 
daylight. Table 4 shows the quantitative classification metrics. In this study, true positives 
refer to instances where the ESP32-CAM successfully captured images of squirrels that 
were also recorded by the Hawkray camera, which can be calculated as 29+51+18 = 98. 
False positives occur when the ESP32-CAM captures images in the absence of squirrels, 
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resulting in blank images. The total number of false positives is calculated as 15+4 = 19. 
True negatives represent cases where non-small mammal species were present, and the 
ESP32-CAM was not triggered. This is evident from the Hawkray camera capturing an 
image of a chicken, while the ESP32-CAM did not, leading to 1 true negative instance. Bats 
and rats observed at night were excluded from this calculation, as the ESP32-CAM lacks 
night vision, rendering nighttime data invalid. False negatives occur when small mammals 
are present and captured by the Hawkray camera but are missed by the ESP32-CAM. This is 
determined by the difference between the number of squirrel images recorded by Hawkray 
and missed by the ESP32-CAM, calculated as (30 - 29)+(54 - 51)+(24 - 18) = 10. Based 
on the classification metrics in Table 4, the precision metric for the ESP32 CAM in the 
detection of squirrels is manually calculated as 0.84, while the calculated Recall metric is 
0.91, and the F1 score is 0.87.

Figure 14 presents a comparative analysis of the ESP32 CAM and the Camera Trap 
regarding the quantity of squirrel images obtained. In general, the ESP32 CAM recorded 
a lower number of squirrel images than the Camera Trap. The difference in the quantity 
of captured squirrel images ranges from 1 to 6. 

Figure 13. Images captured by Hawkray trail camera showing the squirrel’s appearance (red circle) in high 
resolution (1920 × 1080 pixels)

Table 4 
Classification metrics of squirrel images captured by ESP32 CAM

True Positive False Positive True Negative False Negative
Number of squirrel images captured 
by ESP32 CAM 98 19 1 10



PREPRINT

Smart Wildlife Camera Using ESP32 CAM

For the Chi-Square Goodness of Fit test, we used the number of images from the ESP32 
CAM as the observed frequency and the number from the Hawkray Digital trail camera 
as the expected frequency. The results indicate no significant difference in the number of 
squirrel images obtained from the ESP32 CAM compared to those from the Hawkray trail 
camera, with Χ2 (1, N = 98) = 0.853, p = 0.653. 

DISCUSSION

Background Consistency and Object Size

From the findings, it is evident that, although both modeling frameworks attained an overall 
F1 score exceeding 50%, Model B, which utilized camera trap imagery, exhibited a superior 
F1 score and demonstrated heightened accuracy in the identification of small mammalian 
species in comparison to Model A, which relied on training images sourced from the 
Google repository. This discrepancy may be attributed to several variables, including 
the uniformity of the backgrounds in the images as well as the dimensions of the objects 
depicted therein. The images procured from the Google repository are characterized by 
diverse backgrounds, having been captured across a range of landscapes including arboreal 
canopies, forest undergrowth, and residential perimeters, employing various devices such as 
camera traps, mobile phone cameras, or professional-grade cameras, and in some instances, 
through artificial means utilizing artificial intelligence. This phenomenon is referred to as 
capture bias, as outlined by Tommasi et al. (2017). For example, the image background 
may occasionally be replete with dense vegetation or alternatively, be rendered plain or 
intentionally blurred to emphasize the animal’s presence within the images (Figure 7). Such 
uncontrolled variables contribute to the inconsistency in the photographic backgrounds, 

Figure 14. The number of squirrel images captured by the camera trap and ESP32 CAM
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thereby introducing noise during the training process, which complicates the ability of 
machine learning algorithms to accurately discern the features of the target objects, namely 
squirrels and rats (Xiao et al., 2020). 

A study conducted by Fadzly et al. (2021) posited that machine learning systems can 
misinterpret the image backgrounds as salient characteristics of the objects being analyzed. 
Conversely, the camera trap photographs captured at a singular field site generally exhibit a 
more consistent background (Figure 8) as the camera is oriented towards the same natural 
scenery, barring any human interventions or disturbances from wildlife. The homogeneity 
of the backgrounds in the camera trap photographs facilitates the machine learning model’s 
capability to detect any anomalous activities or movements within the images, allowing it 
to visualize features that correspond with the morphological characteristics of squirrels and 
rats while disregarding any extraneous background components that are frequently present, 
such as foliage, vegetation, and fallen leaves (Nielsen et al., 2023; Wong & Fadzly, 2022). 

The dimensions of objects and their angular representation in visual data are pivotal 
elements that affect the precision of the model (Feng & Lu, 2023; Sun et al., 2023). Figure 8 
demonstrates the characteristics derived for squirrels and rats from online imagery in Model 
A, which exhibited significant overlap. This indicates that the Google Image Database 
model is inefficient in distinguishing squirrels and rats. The existence of overlapping 
characteristics may present difficulties in accurately differentiating between closely related 
species or in identifying individuals within intricate backgrounds.

The variability in the sizes of the squirrels and rats might be due to the differences in 
the focus areas. Some are too far, too close, or at a varied angle. This invariably confuses 
the model about the actual size of the trained/detected animals (Sun et al., 2023). This 
misinterpretation could fail to detect the object and the erroneous identification of non-
relevant objects, compromising the model’s accuracy in identifying the intended targets 
(Feng & Lu, 2023). In Model B, the features derived from the field photographs exhibit 
greater distinctiveness and separation (Figure 11). This might be due to the fixed angle, 
distance, and similar background. The uniformity in the size of the objects facilitates 
the model’s capability to achieve a heightened level of precision in recognizing unique 
attributes of the small mammals, which is imperative for accurate species identification. 
Upon examination of both models, the images from the camera trap show that the object 
(rats/squirrels) is detected at nearly the same place each time. Squirrels are mostly in front 
of the tree trunk, and rats are mostly on the ground level. This consistency in the training 
datasets helps the model output compare between the object and background (Hao et al., 
2022; Schneider et al., 2020; Xiao et al., 2020). Incorporating an additional step of collecting 
local background images from the study site is expected to improve model performance, 
since the similarity in the background has a profound effect on the model’s effectiveness 
(Dujon & Schofield, 2019). This step would benefit the model rather than solely relying on 
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web-mined images, as it ensures better adaptation to the specific environmental conditions 
of the study area. It is crucial to consider these parameters in the formulation of training 
datasets prior to their application within a model, thereby facilitating the reduction of object 
detection inaccuracies and the optimization of its overall accuracy. 

Application of TinyML in ESP32 CAM

The utilization of TinyML for the integration of object detection models within the 
ESP32 CAM framework is indeed feasible (Gotthard & Broström, 2023; Panda et al., 
2022; Rahim & Zainal, 2024; Raiaan et al., 2023). These recent studies highlight the 
effectiveness of using ESP32 CAM for wildlife monitoring such as monkeys, dogs, 
rhinoceros and many other large endangered species. An analysis of the outcomes reveals 
that the camera successfully adhered to the algorithmic instructions by capturing images 
exclusively when small mammals were detected, while disregarding extraneous stimuli 
from alternative animal species. Results have shown no statistically significant differences 
in the frequency of squirrel detections for the two devices under consideration, namely 
the Hawkray trail camera and the ESP32 CAM. Nevertheless, the constraints imposed by 
the restricted quantity of training datasets may contribute to potential inaccuracies in the 
model’s performance (Schneider et al., 2020) when implemented on the ESP32 CAM. The 
occurrence of blank images captured by the device could potentially be attributed to the 
misidentification of fallen leaves as small mammals. Despite its inability to detect certain 
instances of squirrels in comparison to the Hawkray trail camera, the findings substantiate 
the feasibility of employing TinyML within ESP32 CAM. 

This is evidenced by the higher number of true positives compared to false positives 
and false negatives. The majority of research (Bagchi et al., 2022; Das & Halder, 2024; 
Kadhim et al., 2023) has predominantly investigated the application of ESP32 CAM for 
facial recognition systems, with a limited number of studies exploring its use in wildlife 
detection systems (Linder & Olsson, 2022). This disparity may stem from the wildlife 
detection model’s exigency for a substantial and heterogeneous training dataset to attain 
a high level of accuracy in the automatic identification of various animal classes. Such 
extensive training requirements are likely impractical for most ecological research 
(Schneider et al., 2020). The more animal class is introduced in the algorithm, the more 
taxing it is for the system to perform.  However, this investigation concentrated solely on a 
single group of animals, specifically small mammals, and was limited to only squirrels and 
rats. This targeted approach mitigates the necessity for a large training dataset. It facilitates 
the model’s ability to learn from a more modest dataset, thereby achieving satisfactory 
accuracy in detecting squirrels. Given that TinyML is specifically engineered for operation 
under low power constraints, it is congruent with the ESP32 CAM, which is characterized 
by low power consumption and limited processing capabilities. 
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Furthermore, implementing TinyML in the ESP32 CAM demonstrated the usability of 
local on-device processing, minimizing processing costs (Schizas et al., 2022). A majority 
of online platforms, including AIDE, MegaDetector, and Wildlife Insights (Ahumada et 
al., 2020; Beery et al., 2019; Kellenberger et al., 2020), require the images to be uploaded 
before comparing the blank images and identifying the animals depicted in them. Through 
the mechanism of local processing, the camera is activated solely upon the presence of the 
selected species. Therefore, there would be no need to transfer and upload images for model 
learning first. This advancement holds significant potential for the prolonged deployment 
of cameras in remote regions that pose logistical challenges for accessibility. Future studies 
focused on population dynamics and the monitoring of animal species may greatly benefit 
from applying TinyML in compact devices such as the ESP32 CAM. 

Limitations of ESP32 CAM

During the investigation, several limitations inherent to the ESP32 CAM were identified. 
In contrast to commercially available camera traps, the ESP32 CAM lacks an infrared 
sensor. An infrared sensor is a crucial component typically integrated into camera traps, 
utilized to detect IR or thermal signals from objects (Trolliet et al., 2014). These IR sensors 
help the camera to continue working even at night. ESP32 CAM lacks an IR sensor and 
relies only on environmental lighting (although this could be attached separately via the 
GPIO pins). This constraint renders the device impractical during nocturnal hours, as it is 
incapable of detecting any movement in complete darkness. Consequently, this represents 
the primary rationale for the inability to conduct rat detection using the ESP32 CAM in 
this study, given that the module lacks infrared technology or night vision capabilities, 
and considering that rats are predominantly nocturnal foragers. Researchers engaged in 
monitoring nocturnal fauna are advised to utilize an ESP32 CAM module equipped with 
an integrated infrared sensor. 

Moreover, the image quality or resolution of the ESP32 CAM is suboptimal compared 
to that of the Hawkray trail camera. The ESP32 CAM is characterized by a 480 x 320 
pixels resolution, whereas the Hawkray trail camera boasts a 1920 x 1080 pixels resolution. 
Pixels constitute the fundamental units that denote a singular point of color or grayscale, 
collectively forming a digital image. A higher pixel count correlates with enhanced detail 
within an image, thereby yielding superior image quality (Wong & Fadzly, 2022). The 
low resolution of the images from the ESP32 CAM results in a lack of clarity and detail, 
producing images that are often indistinct (Figure 12). 

In contrast, the Hawkray trail camera, with its elevated resolution, generates notably 
sharper images, thereby offering a more detailed representation of squirrels (Figure 13). 
The ESP32 CAM is equipped with a diminutive and rudimentary camera lens, the OV2640, 
which possesses a restricted field of view in comparison to the high-performance lenses 
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employed by commercial camera traps. This rudimentary lens significantly constrains the 
capability of the ESP32 CAM to deliver images of satisfactory quality. While the ESP32 
CAM may serve effectively for the singular purpose of wildlife detection, alerting the 
owner to the presence of wildlife, it is not an appropriate instrument for studies focused 
on characterizing or recognizing individual wildlife due to its inherent limitations in image 
resolution.

Another constraint of the ESP32 CAM pertains to its detection range. The fundamental 
camera integrated within the ESP32 CAM exhibits a restricted object detection distance of 
merely 4 meters, as highlighted in the research conducted by Budiharto et al. (2022). This 
signifies that only fauna that come within 4 meters of the camera will be quantified and 
detected by the ESP32 CAM. Fauna situated beyond this specified distance will remain 
undetected by the camera, culminating in a lost opportunity to ascertain the species and 
document the characteristics of the animal. Furthermore, the restricted detection range 
results in a limited coverage area for the camera. This limitation may present substantial 
challenges if the research site encompasses a large spatial area that a singular ESP32 CAM 
is incapable of adequately monitoring. The device may also necessitate strategic placement 
and orientation near locations where animals are likely to approach closely to enhance its 
detection efficacy and mitigate false negatives (the failure to detect wildlife).  

Although this study highlights some of the weaknesses of ESP32 CAM, we have to 
point out that the original idea of detecting specific target animals using the module is 
feasible. Furthermore, ESP32 CAM is an open-source design, and additional electronics 
can be added through its GPIO pins. Sensors such as temperature, humidity, and a real-
time clock (RTC) can be added to the module. The OV2640 camera that comes standard 
with the module can also be replaced with the OV5640, which is 5 Megapixels in quality. 
An IR LED can be soldered (replacing the normal LED on the board) to help in low-light 
conditions. However, this will invariably cause an increase in the budget for developing 
the camera as we aim for a device costing less than MYR50 (excluding the batteries). Our 
team works on several other microcontroller boards, such as the SeeedStudio Xiao series. 
Further development concerning these new microcontrollers is still in progress.

CONCLUSION

Although the ESP32 CAM demonstrates efficacy in identifying small mammals through 
an algorithm developed by Edge Impulse, it has constraints, such as a limited field of view, 
low-resolution images, and an absence of infrared capabilities necessary for nocturnal 
operations. For the training of the detection model, employing field photographs taken from 
the identical location is likely to yield superior accuracy in comparison to images sourced 
through web mining (e.g., Google image repositories). Despite successfully demonstrating 
the ESP32 CAM’s potential as a machine-learning wildlife monitoring device, we have 
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some recommendations to enhance the study. Firstly, the volume of the training dataset 
could be augmented by acquiring a greater number of field photographs in advance. An 
expanded dataset could significantly enhance the model’s efficacy (Shahinfar et al., 2020). 
Secondly, more focus could be directed at the different Learner AI models, such as YOLO 
v9 or FOMO. Enhancing the model’s accuracy and performance may require adopting an 
advanced machine learning platform that offers superior processing capabilities. Thirdly, 
integrating infrared technology into the ESP32 CAM would enable its functionality in 
low-light conditions. Future research should optimize the ESP32 CAM as an AI-assisted 
Wildlife camera to detect additional wildlife species, thereby contributing to conservation 
and research initiatives.
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